Support Centre

Getting Started


Entities are additional elements of structured data which can be extracted from within the verbatims. Entities include data such as monetary quantities, dates, currency codes, organisations, people, email addresses, URLs, as well as many other industry specific categories. 


The below screenshot shows a verbatim containing two predicted entities; a monetary quantity and a value date:



An example operations email verbatim from an Investment Bank containing two structured data entities: a monetary quantity and a value date


Much like labels, predicted entities can be accepted, rejected, or assigned by highlighting a string of text and choosing the correct entity from the list in the modal (see here for how).  Both of these actions will provide training signals to the entity extraction model, which will improve its understanding of that entity type. 


Enabling entity extraction and selecting the entities to extract are confirmed either during the creation of the dataset or via the settings section in the Dataset settings page. 

Previous: Datasets     |     Next: Labels (predictions, confidence levels, hierarchy, etc.)

Did you find it helpful? Yes No

Send feedback
Sorry we couldn't be helpful. Help us improve this article with your feedback.


View all